NEUROLOGIC
ELSEVIER CLINICS

SAUNDERS
Neurol Clin 25 (2007) 257-276

Toxic Neuropathies Associated with
Pharmaceutic and Industrial Agents
Zachary London, MD, James W. Albers, MD, PhD*

Department of Neurology, University of Michigan, 1324 Taubman Center,
Ann Arbor, MI 48109-0322, USA

The diagnosis of peripheral neuropathy can be established readily on the
basis of clinical and electrodiagnostic criteria. Clinicians generally think of
neuropathy, as a manifestation of an underlying systemic disorder, such
as diabetes mellitus, or as a hereditary disorder of myelination. Investiga-
tions aimed at identifying the source of a neuropathy are fueled appropri-
ately by the desire to find a reversible cause or at least to provide
information about prognosis. The most common causes of peripheral neu-
ropathy are genetic, inflammatory, or systemic, and many of these condi-
tions can be diagnosed with simple blood tests.

In up to 20% of cases of neuropathy, however, the standard battery of
laboratory tests is unrevealing. In these instances, it is natural for patients
and physicians to wonder whether or not an unsuspected toxicant could
be responsible. This suspicion can be heightened when patients have
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unexplained systemic manifestations or when other close contacts also have
developed symptoms of neuropathy. In other cases, exposure to a specific
agent is suspected as the cause of peripheral neuropathy. At times like
this, it can be tempting to equate exposure (or opportunity for exposure)
with causation. Patients may be anxious to know if they need to take steps
to eliminate an ongoing industrial or environmental exposure, and in some
cases litigation is involved. Perhaps an even more common situation is
patients who have idiopathic neuropathy and who undergo exhaustive
work-up and are found to have abnormal levels of an unsuspected toxicant.
For example, routine screening for urine arsenic is a common practice, and
elevated levels periodically are discovered in patients who do not have
a known exposure. The physician then is left with the task of determining
if these values represent true toxicity.

In all of these situations, it helpful to have an understanding of the clin-
ical, laboratory, and electrodiagnostic features of specific toxic neuropa-
thies. Whenever a toxic neuropathy is suspected, it also is essential to
understand the scientific methodology necessary to verify or refute this sus-
picion. The purpose of this article is to discuss the clinical investigation of
a suspected toxic neuropathy, to review some of the more common or rep-
resentative toxicants, and to identify the methods for establishing causation.

The clinical evaluation of suspected toxic neuropathy

Perhaps the most compelling reason to be familiar with the various toxic
neuropathies is that these conditions are, by nature, reversible with removal
of the offending agent. Thus, even though these conditions are rare, there is
an urgency to arrive at the correct diagnosis so measures can be taken to
eliminate ongoing toxic exposure. Early diagnosis also can identify other in-
dividuals who may be at risk. Unfortunately, identifying a toxicant as the
causative agent for a patient’s neuropathy can be a difficult task, as there
are no neurologic or electrodiagnostic features that distinguish toxic neu-
ropathy from other causes of peripheral neuropathy reliably. Thus, toxic
neuropathies always must be considered once a clinical diagnosis of neurop-
athy is established.

The first step in working up a suspected toxic neuropathy is to establish
that a patient does, in fact, have clinical and electrodiagnostic evidence of
peripheral neuropathy. The history should focus on sensory, motor, and au-
tonomic complaints, including temporal profile, magnitude, and description
of the symptoms. Most toxic neuropathies involve the longest and largest
axons, causing numbness, paresthesias, or weakness in a stocking or stock-
ing-glove distribution [1].

If a toxic neuropathy is suspected based on a patient’s symptoms and
signs and an apparent lack of a systemic or hereditary cause, the diagnostic
yield can be increased by asking directed questions about potential
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pharmaceutic, industrial, recreational, or environmental exposures. It is use-
ful particularly to become familiar with common pharmaceutic agents that
can be associated with neuropathy. Examples include amitriptyline, cimeti-
dine, cisplatin, colchicine, dapsone, disulfiram, ethambutol, gold, hydralazine,
isoniazid, lithium, paclitaxel, phenytoin, nitrofurantoin, metronidazole,
thalidomide, and vincristine. It also is important to ask about over-the-
counter preparations and vitamins, because some agents, such as the essen-
tial vitamin, pyridoxine, can be potent neurotoxicants at high doses. It is
also worthwhile to ask about potential occupational exposures, including
specific chemicals, whenever possible. Industrial exposures have become in-
creasingly uncommon compared with their reported frequency in the early
twentieth century. This almost certainly is the result of increased aware-
ness of the neurotoxic properties of the chemicals used in manufacturing
and the institution of preventive measures to reduce exposure. Exposures
to known neurotoxicants still occur, however, often in epidemic form,
and new industrial chemicals that may cause neuropathy periodically are
introduced into society.

It is important, also, to solicit information about recreational exposures,
such as use of chemicals in hobbies. Recreational drugs, such as alcohol, ni-
trous oxide, and n-hexane (from sniffing glue) are well-established causes of
neuropathy. These causes of neuropathy easily can be missed, because pa-
tients may hesitate to volunteer information about recreational drug use.
Even a negative response to direct questioning does not exclude such agents
from further consideration.

Finally, it is important to take a thorough review of systems and perform
a thorough general examination, because many neurotoxicants also cause
systemic toxicity (Table 1). For example, arsenic poisoning can cause abnor-
mal skin pigmentation and nail abnormalities (Mees’ lines), and thallium in-
toxication can cause alopecia. Often, patients complain of nonspecific
systems suggestive of gastrointestinal, cardiovascular, hepatic, or renal tox-
icity. These features should raise clinical suspicion for a toxic neuropathy,
even though they may not suggest a specific toxicant.

Physical examination should focus foremost on findings that are suggestive
of peripheral neuropathy. Objective findings, such as motor weakness
and loss of reflexes, are more significant than subjective findings, such as
sensory loss, without supportive evidence of impaired sensation (eg, a positive
Romberg’s sign). Examination of the skin, hair, and nails may help identify
features of systemic toxicity. Most patients found to have toxic neuropathy
do not exhibit any of these cardinal features. Furthermore, features that are
believed the most suggestive of a toxic exposure, such as Mees’ lines, often
appear long after patients develop symptoms of neuropathy, limiting their
initial diagnostic usefulness.

Electromyography (EMG) and nerve conduction studies are an essential
part of the investigation for neuropathy, because they can confirm the diag-
nosis of peripheral neuropathy and give valuable information about
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Table 1

Selected systemic clues associated with specific neurotoxicants

Neurotoxicant Systemic feature

Acrylamide Irritant dermatitis, palmar erythema, desquamation,
hyperhydrosis, axonal swellings

Arsenic Gastrointestinal symptoms, hyperpigmentation,

hyperkeratosis, Mees’ lines, cardiomyopathy,
hepatomegaly, renal failure, anemia, basophilic
stippling of red blood cells

Colchicine Myopathy (neuromyopathy)
Dapsone After decades of use, possibly slow acetylators
Ethyl alcohol Nutritional factors, Wernicke’s syndrome (dementia,

ophthalmoplegia, and ataxia), midline cerebellar
degeneration, abnormal liver function, cirrhosis

n-hexane Irritant dermatitis, axonal swellings

Lead Gastrointestinal symptoms, musculoskeletal
complaints, weight loss, gum lead line, bone lead
line, Mees’ lines, renal failure, anemia, basophilic
stippling of red blood cells

Lithium Postural tremor

Mercury, elemental Anorexia, gingivitis, hypersalivation, papular rash,
hyperkeratosis, lens opacities, postural tremor,
nephrotic syndrome, respiratory tract irritation,
metal fume fever

Nitrofurantoin Elderly with impaired renal function
Nitrous oxide Myelopathy
Organophosphate pesticides Irritant dermatitis, acute cholinergic effects,

corticospinal tract residua, noncardiogenic
pulmonary edema

Phenytoin Gingival hyperplasia, cerebellar ataxia

Thallium Gastrointestinal symptoms, irritant dermatitis,
alopecia, noncardiogenic pulmonary edema

Trichloroethylene Vasodilation with ethanol ingestion, irritant
dermatitis, elevated liver function tests, cirrhosis

Toluene Respiratory tract irritation, irritant dermatitis

L-tryptophan Peau d’orange, eosinophilia

Adapted from Ford D. Exposure assessment. Continuum: lifelong learning in neurology
neurotoxicology; 1999. p. 9-25.

pathophysiology and severity [2]. Nerve conduction studies, in particular,
provide a degree of information that cannot be determined on a clinical ba-
sis alone. First, nerve conduction studies can determine whether or not the
neuropathy involves sensory axons, motor axons, or both. Second, they can
determine whether or not there is conduction slowing. Any neuropathy that
causes loss of large-caliber myelinated axons can cause mildly reduced con-
duction velocities, but conduction slowing out of proportion to axonal loss
can help focus the differential diagnosis significantly. Third, nerve conduc-
tion studies can identify the pattern of neuropathy, such as a typical stock-
ing-glove polyneuropathy or a mononeuritis multiplex. Needle EMG is of
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secondary importance in the evaluation of neuropathy. It is useful predom-
inantly for identifying the degree of axonal involvement and ruling out pol-
yradiculopathy, which can mimic peripheral neuropathy.

Many neurotoxicants cause similar clinical manifestations, but electro-
diagnostic testing can be used to divide the neuropathies produced by neuro-
toxicants into broad categories. These categories are not exclusive, and some
toxicants can cause more than one type of neuropathy, often depending on
whether or not patients are subjected to a massive acute exposure or a low-
dose chronic exposure. Nevertheless, this classification scheme is useful be-
cause it incorporates the suggested pathophysiology of the abnormality and
can reduce an exhaustive list of potential neurotoxicants to a more manage-
able differential. These major categories include motor or motor greater
than sensory neuropathy with or without conduction slowing, sensory neu-
ropathy or neuronopathy, sensory greater than motor neuropathy with or
without conduction slowing, and mononeuritis multiplex.

Discussion of every known toxic neuropathy is beyond the scope of this
article. Rather, it focuses on selected examples that are the most common or
most characteristic of each of the categories described.

Motor and motor greater than sensory neuropathy, with conduction slowing

Some neurotoxicants can mimic acute inflammatory demyelinating poly-
radiculoneuropathy (AIDP), with a motor or motor greater than sensory
neuropathy with conduction slowing. Examples include arsenic (shortly af-
ter exposure), n-hexane, amiodarone, carbon disulfide, cytosine arabinoside,
methyl n-butyl ketone, perhexiline, saxitoxin, and suramin.

Arsenic

Arsenic is a metalloid best known for its use as a poison in homicide and
suicide. Industrial exposure may occur in lead and copper smelting, mining,
and pesticide manufacturing [3]. Sources of environmental exposure include
tainted well-water, wood preservatives, and arsenic-contaminated fossil
fuels [4,5].

The neurotoxic effects of arsenic differ, depending on whether or not pa-
tients are subjected to an acute massive exposure or a chronic, low-level ex-
posure. High-dose exposure can lead to a syndrome that can mimic AIDP
[6]. Neuropathy begins 5 to 10 days after exposure and progresses over
weeks. As with many toxic neuropathies, there may be a “coasting” effect,
with continued progression of disease for a period of weeks after removal
from exposure. Patients can develop flaccid areflexic quadriparesis, bifacial
weakness, and even diaphragm paralysis, requiring ventilatory support [7,8].

Clinical manifestations can help distinguish arsenic toxicity from inflam-
matory demyelinating neuropathy, including a variety of systemic symp-
toms that may develop before the onset of neuropathy. Gastrointestinal
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disturbance with abdominal pain and vomiting, tachycardia, and hypoten-
sion are common, although these symptoms also may be seen in AIDP
[9]. Nonspecific systemic manifestations may follow, including hepatomeg-
aly, renal failure, anemia, and cardiomyopathy, which are atypical for
AIDP. Other systemic features are more specific to arsenic toxicity, such
as brownish desquamation of the hands and feet (arsenical dermatitis)
and Mees’ lines on fingernails and toenails. Unfortunately, the skin and
nail changes may not appear until a month or more after isolated ingestion
of arsenic, by which time the diagnosis rarely is still in question.

If an initial EMG is performed within days, decreased motor unit recruit-
ment may be the only finding. Over the first few weeks, EMG may show
motor greater than sensory neuropathy with reduced amplitudes, border-
line—low conduction velocities, prolonged F waves, and even partial conduc-
tion block in several motor nerves. The nerve conduction studies even may
fulfill criteria for the diagnosis of an acquired demyelinating neuropathy
[10]. Cases even are reported in which the sural sensory response is normal,
but the median sensory response is absent, a finding often found in AIDP
[11]. Follow-up studies are more consistent with a typical dying-back axon-
opathy, with absent sensory and motor responses and denervation/reinner-
vation changes on needle EMG.

Chronic exposure to low levels of arsenic, such as can be seen in industrial
settings, often results in dermatologic manifestations first, including hyperpig-
mentation, hyperkeratosis, and mucosal irritation [12]. Ongoing exposure
may lead to a painful length-dependent neuropathy with proportionally fewer
motor symptoms [3].

Laboratory testing can aid in the diagnosis of arsenic poisoning in acute
and chronic settings. Urine arsenic levels greater than 25 pg in a 24-hour
specimen generally are considered abnormal, although levels may be ele-
vated falsely by the ingestion of seafood, in particular bottom-feeding fin-
fish. Small amounts of arsenic bind to keratin in growing tissues, allowing
diagnosis to be made by measuring levels in hair and nails. This is useful
particularly in the setting of chronic or low-level exposure or for detecting
a remote exposure that has since ceased. Blood arsenic levels are not helpful,
because serum arsenic is cleared within 2 to 4 hours [13].

Chelation with penicillamine or dimercaprol should be started as soon as
possible after exposure [14,15]. The usefulness of chelation in preventing
progression of acute arsenical neuropathy is unknown, however.

Hexacarbons

N-hexane and methyl-n-butyl ketone are hexacarbons used in industrial
solvents and household glues. Most of the industrial exposures producing
neuropathy occurred in the cabinet- and shoe-making industries, where hex-
acarbon solvents were used extensively until the 1970s. More recently, cases
of n-hexane neuropathy were reported in automotive technicians using



TOXIC NEUROPATHIES AND PHARMACEUTIC AND INDUSTRIAL AGENTS 263

degreasing solvents and cleansers. The most common source of n-hexane ex-
posure today is the intentional inhalation of household glues for the purpose
of intoxication [16,17].

Both n-hexane and methyl-n-butyl ketone are metabolized to 2,5-hexane-
dione in the liver, which probably is the neurotoxic agent [18]. Substantial
n-hexane toxicity causes central nervous system depression and narcosis, but
with repeated exposures, peripheral neurotoxicity can develop. Specifically,
n-hexane causes a neuropathy consisting of length-dependent distal sensory
loss, weakness, atrophy, reduced or absent distal reflexes, and autonomic
dysfunction. Among “‘huffers,” who inhale massive quantities of n-hexane
volitionally, motor and cranial nerve symptoms may predominate. Further-
more, nerve conduction studies often demonstrate reduced amplitudes with
conduction velocities in the range of a primary demyelinating disorder [19].
As with arsenic, n-hexane can create a clinical picture that mimics AIDP.
Chronic, low-level exposures are associated with a more typical dying-
back sensorimotor neuropathy with sensory loss, distal weakness, and ab-
sent ankle reflexes [20,21]. Chronic occupational and recreational exposures
also are associated with degeneration of distal corticospinal and dorsal
column pathway and impairment of color vision [22].

The classic neuropathologic finding in n-hexane neuropathy is giant axo-
nal swellings, which consist of neurofilamentous aggregates that accumulate
secondary to abnormalities of axonal transport. The slow conduction veloc-
ities found on nerve conduction studies are believed to represent secondary
myelin sheath damage from these focal axonal swellings [17,23-27].

Cessation of exposure is the primary means of treatment, and in one large
case series, all 102 patients who had identified cases of n-hexane intoxication
recovered completely without other intervention [28].

Amiodarone

Amiodarone is a di-iodinated benzofuran derivative used for refractory
or life-threatening ventricular arrhythmias. Amiodarone is associated with
several neurotoxic effects, including peripheral neuropathy, action tremor,
myopathy, optic neuropathy, basal ganglia dysfunction, encephalopathy,
and pseudotumor cerebri.

The neuropathy associated with chronic amiodarone use varies in various
reports. The clinical presentation may be a symmetric, subacute to chronic
sensorimotor polyneuropathy with distal predominance [29-37]. Other in-
vestigators have reported a rapidly evolving motor-predominant neuropa-
thy that can be difficult to distinguish from AIDP [38].

Reports of nerve conduction studies vary from a sensory-predominant ax-
onopathy with reduced amplitudes to a demyelinating picture with prominent
conduction slowing [39]. The findings in sural nerve biopsies also vary, with
some specimens demonstrating axonal loss and others showing almost pure
demyelination [40]. Amiodarone is highly lipophilic and forms intralysosomal
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lipid complexes, leading to inclusions in multiple tissues. These inclusions are
seen in neural structures, suggesting a possible mechanism of toxicity.

There is no specific treatment for amiodarone-induced neuropathy other
than lowering or discontinuing the drug. Recovery can be slow after re-
moval of the exposure, because amiodarone has a long half-life (25-100
days).

Motor and motor greater than sensory neuropathy, without conduction
slowing

Some neurotoxicants are known to produce a motor-predominant neurop-
athy without conduction slowing, including certain organophosphates, vin-
cristine and other vinca alkaloids, nitrofurantoin, cimetidine, dapsone, and
possibly lead.

Organophosphates

Unlike most chemicals that cause neuropathy, organophosphates have
been used widely because they are poisonous, rather than in spite of it.
The neurotoxic properties of organophosphate compounds have led to their
use as insecticides and “‘nerve” gases. Less toxic forms also have been used
in hydraulic fluids, lubricants, fuel additives, plastic modifiers, and flame
retardants. Today, most cases of acute neurotoxicity are in the setting of
intentional ingestion of insecticides as a suicide attempt.

One of the most remarkable illustrations of large-scale organophosphate
poisoning was the jake leg epidemic of 1930. Jamaica ginger, or jake, was an
alcohol-based patent medicine that was popular among poor city-dwellers
trying to circumvent Prohibition laws. To fool Prohibition chemists into
thinking the medicine had a higher percentage of solids, one supplier con-
taminated Jamaica ginger with triorthocresyl phosphate (TOCP), an organ-
ophosphate that was believed harmless. By the time the source of the
contamination was identified and removed, tens of thousands of Americans
had developed disabling neuropathy [41-43].

Organophosphates exert their primary neurotoxic effect by inactivating
acetylcholinesterase. This leads to an accumulation of acetylcholine in mus-
carinic and nicotinic receptors. Symptoms of cholinergic excess include bra-
dycardia, salivation, nausea, bronchospasm, miosis, diarrhea, sweating,
central nervous system dysfunction, muscle weakness, and fasciculations.
After 1 to 4 days, an intermediate syndrome develops, characterized by
weakness of proximal limb, neck, extraocular, bulbar, and respiratory mus-
cles. This syndrome resembles myasthenia gravis and most likely represents
a depolarizing blockade of neuromuscular transmission. A subacute motor
greater than sensory neuropathy develops as the symptoms of the acute and
intermediate syndromes resolve. Organophosphate-induced delayed neuro-
toxicity (OPIDN), as it has been called, occurs 7 to 21 days after exposure
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and occurs only with certain exposure to certain organophosphates. Weak-
ness follows a length-dependent pattern, with early foot drop and weakness
of hand intrinsic muscles followed by more proximal weakness. Some pa-
tients go on to develop spasticity and upper motor neuron signs, indicative
of superimposed distal corticospinal tract dysfunction [44]. TOCP, the agent
implicated in jake leg, is a unique organophosphate that causes OPIDN
without causing overt cholinergic symptoms first [45,46].

OPIDN is a distal axonopathy that affects the peripheral nerves and the
long tracts in the spinal cord. Nerve conduction studies show evidence of
sensorimotor neuropathy without conduction slowing [47,48]. The patho-
physiology of OPIDN is believed the result of organophosphate-induced
modification of a neuronal membrane protein called neuropathy target
esterase, although the exact mechanism is unknown [49,50].

Vincristine

Vincristine is a vinca alkaloid chemotherapeutic agent used for treatment of
solid tumors, lymphoma, and leukemia. Peripheral neuropathy is the dose-
limiting side effect of all vinca alkaloids, with vincristine the most neurotoxic
[51]. The mechanism of vincristine neuropathy is believed related to impair-
ment of the function of microtubules involved in axonal transport [52].

Pain and small-fiber sensory loss predominate early, usually occurring at
4 to 5 weeks [53]. Autonomic dysfunction also may occur early, with consti-
pation, orthostatic hypotension, and impotence. Distal symmetric weakness
invariably occurs with continued exposure, and in some patients, these
symptoms may develop fulminantly [54]. There also are cases of vincristine
therapy leading to a severe acute neuropathy by unmasking a subclinical in-
herited neuropathy, such as Charcot-Marie-Tooth disease type 1 or heredi-
tary neuropathy with liability to pressure palsies [55-57]. Patients who have
these neuropathies may be susceptible to developing severe weakness with
low or even single doses of vincristine.

In vincristine neuropathy, the EMG demonstrates axonal neuropathy,
with decreased sensory and motor amplitudes on nerve conduction studies.
The presence of motor involvement on electrodiagnostic testing correlates
with the degree of clinical weakness.

Muscle weakness usually recovers rapidly after the drug is discontinued. Up
to two thirds of patients continue to have residual sensory symptoms and absent
deep tendon reflexes, however. Electrodiagnostic measures of neuropathy may
persist indefinitely, with low or absent sensory nerve action potentials.

Sensory neuropathy or neuronopathy, without conduction slowing

Cisplatin, pyridoxine, thallium, metronidazole, ethyl alcohol, nitrofuran-
toin, and thalidomide are shown to induce a pure sensory neuropathy or
neuronopathy without conduction slowing.
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Cisplatin

Cisplatin is a chemotherapeutic agent used for ovarian and small cell lung
cancers that causes a cumulative dose-limiting axonal sensory neuropathy.
The primary site of damage is the dorsal root ganglion (sensory neuronop-
athy), but the large myelinated sensory axons also may be affected [58,59].
Manifestations include numbness, paresthesias, and occasionally pain in
the distal extremities, with loss of deep tendon reflexes and position sense.
The most important condition to consider in the differential diagnosis is par-
aneoplastic sensory neuronopathy, which can present identically. Paraneo-
plastic neuropathies may be associated with autoantibodies in the serum
and may continue to progress despite discontinuation of the cisplatin. In cis-
platin neuropathy, nerve conduction studies show decreased sensory nerve
action potential amplitudes and prolonged sensory latencies.

The toxicity of cisplatin can persist long after the medication is discontin-
ued. In one study of patients who had been treated with cisplatin 13 or more
years prior, 38% were found to have nonsymptomatic neuropathy, 28%
symptomatic neuropathy, and 6% disabling polyneuropathy [60].

The mechanism of cisplatin neurotoxicity is unknown, but it is believed to
relate to disruption of fast axonal transport and induction of apoptosis in
dorsal root ganglion cells [61,62].

Pyridoxine

Pyridoxine, or vitamin By, is an essential vitamin that has neuroprotective
effects when used to treat isoniazid overdose, Gyromitra mushroom or false
morel (monomethylhydrazine) poisoning, and hydrazine exposure [63]. Pyr-
idoxine also is a potent neurotoxicant, however, with low-dose, chronic ex-
posure and with acute massive exposure. Pyridoxine toxicity produces
a pure sensory neuropathy, with numbness and loss of position sense but
no dysfunction of motor nerves or the central nervous system [64]. In
most cases, the neuropathy is slowly reversible with discontinuation of the
pyridoxine, but large acute doses may be associated with permanent pro-
found sensory loss and pseudoathetosis [65].

Thallium

Thallium is a neurotoxic metal that has been used in the manufacture of
optical lenses, semiconductors, scintillation counters, some fireworks, insec-
ticides, and rodenticides [66]. The most common causes of thallium poison-
ing are homicidal, suicidal, or accidental ingestion of rat poison, although
the number of cases has declined substantially since thallium was banned
in the United States as a rodent poison in 1972 [67-70].

Thallium causes a predominantly small-fiber neuropathy, with painful
dysesthesias in the distal lower extremities. Dysautonomia often is present
and may precede neuropathy [71]. Reflexes often are preserved, a feature
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that helps localize the lesion to the small-fiber nerve and differentiate thal-
lium poisoning from AIDP and other toxic neuropathies. Although most
cases of thallium poisoning cause sensory symptoms only, there also are
reports of motor manifestations [72].

Early signs of systemic toxicity include gastrointestinal symptoms, car-
diac and respiratory failure, encephalopathy, and renal insufficiency [73].
The most pathognomonic manifestation of thallium poisoning is alopecia,
which appears 15 to 39 days after intoxication and, therefore, is not useful
in the acute setting [74]. Mees’ lines (white stria of the nails) also may de-
velop as a late sign.

Early in the course of the disease, there may be involvement only of the
small nerve fibers. At this point, nerve conduction studies may be normal or
show only mild abnormalities, such as absent plantar sensory responses. In
more severe cases, evidence of axonal loss is found on electrodiagnostic test-
ing and sural nerve biopsy [75,76].

The exact mechanism of thallium toxicity is unknown. Thallium enters
cells through potassium channels and may compete with potassium in intra-
cellular reactions and interfere with energy metabolism in the Kreb’s cycle,
oxidative phosphorylation, and glycolysis [77].

Sensory greater than motor (sensorimotor) neuropathy, with conduction
slowing

Saxitoxin and tetrodotoxin, although not pharmaceutic agents, are bio-
logic neurotoxicants that produce a sensory greater than motor neuropathy
with conduction slowing.

Saxitoxin

Saxitoxin, otherwise known as red tide, is the neurotoxicant implicated in
paralytic shellfish poisoning. The most common source of saxitoxin poison-
ing is the consumption of bivalve mollusks, in particular those harvested in
the months of May, June, and July [78,79]. Clinical manifestations include
gastrointestinal symptoms, cerebellar ataxia, and a sensorimotor neuropa-
thy, which may be severe enough to cause respiratory depression.

Saxitoxin exerts its effects by blocking sodium channels, reducing the
local currents associated with propagation of the action potential [80].
Nerve conduction studies show prolonged distal sensory and motor latencies
with slowed conduction velocities and moderately diminished response
amplitudes [81].

Tetrodotoxin

Tetrodotoxin is a poison derived from puffer fish, where it is found in var-
ious concentrations in the liver, ovaries, intestines, and skin [82]. Fugu, or
puffer fish fillet, is a delicacy in Japan, where it is the most common cause
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of fatal food poisoning [83]. Clinical manifestations depend on the dose of
the exposure, but neurologic symptoms and signs may range from perioral
numbness to flaccid paralysis, dilated pupils, and respiratory failure without
loss of consciousness. Symptoms may begin within 1 hour after ingestion of
the contaminated fish and generally abate after 5 days [84].

Like saxitoxin, tetrodotoxin causes blockade of voltage-sensitive sodium
channels, leading to conduction failure. Nerve conduction studies show pro-
longation of sensory and motor latencies, prolongation of F waves, slowing
of conduction velocities, and reduced sensory and motor amplitudes [85].

Sensory greater than motor (sensorimotor) neuropathy, without conduction
slowing

The majority of peripheral neurotoxicants produce a length-dependent
sensorimotor neuropathy without conduction slowing. Some examples of
neurotoxicants known to fit this pattern include acrylamide, amitriptyline,
arsenic (chronic), carbon monoxide, ethambutol, ethyl alcohol, ethylene ox-
ide, gold, hydralazine, isoniazid, lithium, elemental mercury, metronidazole,
nitrofurantoin, nitrous oxide, paclitaxel, perhexiline, phenytoin, thallium,
and vincristine.

Acrylamide

Acrylamide is a vinyl polymer used to synthesize polyacrylamide, which
has many applications as a soil conditioner, flocculator, and waterproofing
agent and in the cosmetic, paper, and textile industries. Although polyacryl-
amide is nontoxic, it can be contaminated with the toxic acrylamide, espe-
cially when it is used as a flocculator [86,87].

Acrylamide causes a typical axonal neuropathy with weakness, sensory
loss, and areflexia involving primarily large axons. Systemic symptoms in-
clude irritant dermatitis, palmar erythema, and encephalopathy. Nerve con-
duction abnormalities generally are mild and show low amplitude sensory
responses, and, to a lesser extent, low amplitude motor responses without
significant conduction slowing [88]. Subclinical neuropathy also is detected
in patients who have low-level industrial exposures [89,90].

The pathologic hallmark of acrylamide neurotoxicity, like that of n-
hexane, is giant axonal swellings. Classically, acrylamide is believed to exert
its toxicity through disruption of anterograde and retrograde axonal trans-
port [91]. Some studies suggest, however, that the nerve terminal may be the
primary site of neurotoxicity rather than the axon itself [92,93].

Nitrofurantoin

Nitrofurantoin is an antibacterial agent specific for urinary tract infections.
Nitrofurantoin is implicated in the development of axonal sensorimotor
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neuropathy, with sensory-predominant (common) and motor-predominant
(less common and typically developing after onset of the sensory neuropathy)
neuropathies reported. Patients who have pre-existing renal dysfunction or di-
abetes mellitus are at greater risk for developing nitrofurantoin-induced neu-
ropathy, but neuropathy also is described in otherwise healthy patients taking
standard doses of this medication. [94,95]. The pathologic changes in nitrofur-
antoin-induced neuropathy are those of acute, severe axonal degeneration
[95]. Tt is hypothesized that nitrofurantoin exerts its toxic effects through
dose-dependent depletion of glutathione [96].

Phenytoin

Peripheral neuropathy long has been recognized as a side effect of chronic
phenytoin use, especially at higher doses [97,98]. Although it is not well
studied in prospective trials, most reports of phenytoin toxicity suggest
that it probably does not live up to its reputation as a serious peripheral
neurotoxicant. With standard doses and close monitoring of levels, phenyt-
oin-induced neuropathy is rare. When present, patients usually are asymp-
tomatic and the neuropathy can be detected only by physical examination
or electrophysiologic studies [99—-101].

Mononeuritis multiplex

Rarely, neurotoxicants can present with a clinical picture suggestive of
multiple mononeuropathies, rather than a symmetric, length-dependent pe-
ripheral neuropathy. Examples include trichloroethylene, dapsone, lead,
and L-tryptophan.

Trichloroethylene

Trichloroethylene is a chlorinated hydrocarbon that has been used as
a cleaner, solvent, degreasing agent, and surgical anesthetic. It is unusual
among neurotoxicants in that it is associated with a cranial mononeuritis
multiplex with little evidence of sensory or sensorimotor neuropathy [102].
Patients develop ptosis, extraocular muscle dysfunction, facial and bulbar
weakness, and signs of trigeminal dysfunction [103]. Like other neurotoxi-
cants, trichloroethylene also is a systemic poison. It is shown to cause irri-
tant dermatitis, cirrhosis, and cardiac failure [104].

In association with a trichloroethylene cranial mononeuritis multiplex,
facial motor nerve distal latencies and blink reflex R1 latencies are pro-
longed. Blink reflexes also are used to suggest the presence of a subclinical
trigeminal neuropathy in patients who have chronic, low-dose exposure to
trichloroethylene through contaminated well water [105,106].

It is controversial whether or not trichloroethylene is directly toxic to
nerves or if neurologic symptoms actually are the result of toxicity from
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dichloroacetylene, a metabolite of trichloroethylene that is formed only in
certain conditions, such as high heat or extreme alkalinity [107]. It also is
hypothesized that trichloroethylene does not actually cause a toxic neurop-
athy but rather triggers the reactivation of a latent herpes virus [108]. Nec-
ropsy examination of one patient showed degeneration of the brainstem
nuclei and tracts, the trigeminal nerve, and cranial sensory roots [103].

Dapsone

Dapsone is an antiparasitic and antimycobacterial agent used to treat
leprosy, toxoplasmosis, malaria, and the skin condition, dermatitis herpeti-
formis. Most descriptions of dapsone neuropathy are those of a motor-pre-
dominant neuropathy, often with an asymmetric presentation, suggesting
a mononeuritis multiplex [109-112]. Mixed sensorimotor neuropathy and
mild, sensory neuropathies also are described [113,114].

Neuropathy generally is seen only in patients who have been taking
dapsone for several years, with most cases developing within 5 years of
initiation. Ironically, dapsone has been used widely to treat leprosy, an in-
fectious cause of peripheral neuropathy. In spite of this, most cases in the
literature occur when patients are taking dapsone for dermatitis herpetifor-
mis. Slow acetylators of dapsone likely are at additional risk for developing
neuropathy [110,115].

Electrophysiologic and pathologic studies suggest a distal motor axonop-
athy without features of demyelination [116]. Most patients recover com-
pletely over the course of many months after the drug is withdrawn [115].

Methodology used to establish causation

The most important tenet of establishing a neurotoxic cause of any neu-
rologic problem is that the opportunity for exposure does not prove that the
symptoms were caused by the exposure. Given the widespread prevalence of
peripheral neuropathy, a patient who works with industrial chemicals or
takes a medication known to cause neuropathy still could develop neurop-
athy from a different cause. In fact, in many situations, the alternative expla-
nation is more likely. Knowledge of the biologic effects of the toxicant and
the circumstances of the exposure can help differentiate causation from mere
association.

Most clinicians apply general scientific principals in the formulation of
differential diagnosis without giving thought to the process, but formal cri-
teria exist for evaluating the role of a suspected toxin in a specific case [117].
The purported effect of the toxicant needs to be biologically plausible. The
relative risk of neuropathy varies significantly between neurotoxicants, and
large epidemiologic studies, in particular cohort or case control studies, that
demonstrate a strong association between the toxicant and neuropathy
confer more support for the hypothesis than isolated case reports or
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cross-sectional studies. The existence of a well-studied animal model also
can be helpful in identifying potential mechanisms of neurotoxicity.

The circumstances of the exposure can provide additional information.
For instance, the temporal nature of the exposure is important in establish-
ing causation. Obviously, the neuropathy cannot precede the exposure.
Conversely, a neuropathy that develops months or years after a single acute
exposure is not consistent with causation.

In almost all toxic neuropathies, there should be a dose-response relation-
ship between the level of toxicant exposure and the severity of the neurop-
athy. For many toxicants, biologic markers can be measured in the blood,
urine, or hair. Established reference levels can be used to suggest whether
or not the degree of exposure is substantial enough to account for a patient’s
symptoms. Resolution of the neuropathy and normalization of the biologic
markers after removal of the exposure provide some of the strongest evi-
dence of causation. Some toxic neuropathies, however, continue to progress
for a few weeks after removal of exposure before stabilizing and eventually
improving, a phenomenon known as ‘“‘coasting.”

The most difficult task in establishing causation is eliminating other
causes from the differential diagnosis. Although a patient’s symptoms, signs,
and electrodiagnostic findings may be ““consistent with’’ a toxic neuropathy,
it is likely that the same findings are ‘“‘consistent with” several other causes
also. Eliminating all competing causes from the differential diagnosis re-
quires a working knowledge of systemic, genetic, inflammatory, infectious,
and nutritional causes of neuropathy and other neurotoxicants that could
produce a similar form of neuropathy.

Industrial, environmental, and pharmacologic causes of neuropathy are
uncommon, and may account for only a small fraction of neuropathies in
which no underlying cause is identified with routine tests. Most likely, physi-
cians who attribute a neuropathy to a toxic cause as a diagnosis of exclusion
simply are not generating an accurate or complete differential diagnosis. Nev-
ertheless, it is important to become familiar with the most common and rep-
resentative neurotoxicants, because toxic neuropathies are among the most
treatable forms of peripheral nervous system dysfunction.
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